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A three-dimensional boundary layer developing along a semi-infinite swept 
stagnation line from a starting edge and evolving into that associated with such 
a line of infinite extent is calculated. A series solution useful for assessing the 
counteracting effects of cross-flow and mass transfer near the starting edge and 
for providing initial data for a subsequent streamwise, numerical solution is 
developed. The asymptotic behaviour far from the starting edge is examined and 
shown to involve only eigenfunction contributions associated with the far 
upstream flow. However, it is not presently possible to determine the relevant 
eigenvalues and eigenfunctions. Numerical solutions based on a difference- 
differential analysis yield the entire development of the boundary layer and 
indicate the streamwise length required for the case of the boundary layer at an 
infinite stagnation line to be obtained. 

1. Introduction 
The laminar boundary layer along the stagnation line of a swept, infinite 

cylinder represents a three-dimensional, similar flow in which no quantities 
change in the spanwise direction. For the case of an incompressible fluid the 
chordwise flow is described by the solution for the two-dimensional stagnation 
line, i.e. by the Falkner-Skan equation with p = 1, while the spanwise flow may 
be obtained as a second step in the calculation. Cooke (1950) has provided solu- 
tions for this case. With compressible fluids the chordwise and spanwise flows are 
coupled through the pressure gradient term in the chordwise momentum equa- 
tion. These cases have been studied by a variety of workers; the definitive 
references are Reshotko & Beckwith (1957) for zero mass transfer and Beckwith 
(1958) for transpiration cooling. 

We are concerned here with the behaviour of the boundary layer along the 
stagnation line of semi-infinite extent, i.e. along a cylinder with a starting edge. 
We shall idealize the external flow by assuming that the spanwise velocity and 
the chordwise velocity gradient are independent of the spanwise co-ordinate. 
This idealization can be realized physically in several ways; suppose on a yawed 
cylinder of uniform cross-section, the boundary layer is removed at  some span- 
wise station by a suction patch or slot. Then anew boundary layer will be initiated 
and will develop so as to approach that relevant to the infinite cylinder far 
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removed from the starting station. A second way is to consider a flat plate aligned 
with an undisturbed flow and to imagine a uniform outflow from a plane of 
symmetry imposed by an external body. Again far downstream from the leading 
edge, we expect an asymptotic behaviour independent of streamwise distance. 
Clearly these cases can involve mass transfer and we shall include its effect in our 
analysis. 

In our discussion below we shall consider explicitly the case of the cylinder, but 
it should be understood that the analysis applies to other flow configurations as 
well. We restrict ourselves to outflow from the stagnation line such as occurs on 
convex cylinders, i.e. we do not consider the case of inflow as might occur on 
concave cylinders and on flat surfaces with an appropriate, externally imposed 
pressure field. 

Although our external flow is idealized so that comparison with experiment 
may be difficult, our study provides an indication of the spanwise length required 
for the boundary layer to approach that applicable to the infinite case. This may 
be of interest in a variety of applied problems. 

Concerning previous work relevant to our study, references to the case of the 
infinite cylinder have been cited above. Moore (1957) has considered the case of 
Aows described by the Falkner-Skan equation in the spanwise direction with 
small outflow in order to show that outflow delays separation. Our study is more 
restricted in the sense that only the case of a uniform spanwise flow is considered) 
but more general in that compressibility and mass transfer are included, and in 
that the entire development from the leading edge to far downstream in the 
spanwise direction is considered. Banks (1967) has recently analyzed an incom- 
pressible fluid with a linearly retarded flow in the streamwise direction in order 
to study the development of the stagnation point of the saddle type. Finally, 
Liu (1959) has considered the limiting case of a highly swept stagnation line of 
semi-infinite extent without mass transfer. In  this case a small cross-flow approxi- 
mation applies and simple similarity solutions pertain. Liu emphasizes the heat 
transfer aspects of the flow based on generally inaccessible solutions for the 
velocity field so that direct comparison with our work is not possib1e.t 

2. Analysis 
The geometry and schematic representation of the flow under consideration 

are shown in figure 1. We take the (x, z )  plane to be the plane of symmetry, the 
velocity components in the external flow to be independent of x and to be u,, v, y 
in the x, y direction, respectively, The quantities u, and v, depend on the velocity 
far from the cylinder, the sweep angle and the nose radius of the cylinder. If the 
Prandtl number is assumed to be unity, then the equations describing the 
boundary layer are 

P ( g + w g )  = ; ( P g ) ,  

=p,v:+- p- ) 

:z( :) 
t The authors are indebted to a reviewer for calling this reference to their attention. 
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where the usual notation applies except for v which denotes the y derivative of 
the y velocity component.? 

FIGURE 1. Schematic representation of the flow. 

2.1. Transformed equations 
If we introduce two stream functions @ and 6 such that 

A 

pu = a + p ,  pv = aopz ,  
then without loss in generality, from (2.4)) 

A 

pw = - (a+/ax) -a. 

We also introduce new independent variables 

s (peue/2pe5)tSz 0 (p/pe) dz’ = ~ ( 5 ,  z ) ,  

p = (2v,z/ue)oc 5)  

and new dependent variables 

Then 

t It will be recognized that (2.1)-(2.4) apply only in the region of the stagnation line, 
i.e. that they correspond to the first, non-vanishing tenns in power series in y reflecting 
the appropriate odd or even behaviour of the flow variables as y += 0. With respect to v, we 
note that Reshotko & Beckwith (1957) provide relations for estimating v,, (du,]dx in their 
notation) in terms of the Mach number normal to a cylinder of nose diameter D.  

47-2 



740 P. A .  Libby and K .  K .  Chen 

If we are to include mass transfer, we shall be interested in (pw),; the practically 
interesting case in the present problem is (pw), = constant. With this assumption 
(2 .6 )  and (2 .7)  yield in general 

where K = (pw),/2(pepuewe)a is a mass transfer parameter which will be important 
to our study. As is usual in three-dimensional problems we may satisfy (2 .9)  in 
a variety of ways. Without loss of generality we shall set $w 3 0 and take 
- f, = ~ f ; .  The solutions so obtained may be used to construct other solutions by 
adding a ~ t  and ( - 2 ~ p / i 3  to our f and $) respectively, where a and j!3 are arbitrary 
constants subject only to the requirement that a +p = 0. 

The equations for f([,<), $( f ; ,  5)  are found to be 

(2.10) 

provided, as is frequently done, we assume pp N pepe. 
We take the frequently employed, approximate equation of state p N h-l, 

where h is the static enthalpy; assume a constant wall enthalpy; and from a 
comparison of (2.1) and (2 .3)  deduce that a Crocco relation applies. Thus 

(Pe/P) = bw+ ( l - g w )  (aY'/aC)-fi(af/aC)'I (l-fi)F1) (2.12) 

where g, 3 (hw/hs,e) and f i  = zc32hs,,, and where the subscript s, e refers to 
stagnation conditions external to the boundary layer. 

The boundary conditions applicable to (2.10) and (2.11) are 

} (2.13) 
f (6) 0) = - Kf;) ~ f / a c ( t >  0) = 4%) 0) = a $ / a M  0) = 0, 

a f l a a t ,  a) = a$ lac ( t ,  00) = 1 .  

We shall assume that no arbitrary initial data are to be prescribed at  6 > 0, but 
rather that the behaviour of (2.10) and (2.11) as t+ 0 implies acceptable initial 
data. Let f i (5)  and $i(c) denote the solutions as c + O ;  we find 

(2.14) 

where ( )' indicates differentiation with respect to 5. It is clear from (2.14) that 
the initial profiles in both the streamwise and cross-flow directions are given by 
the Blasius solution, independent of the parameters K ,  gw and 6. The physical 
explanation of this result appears to reside in the dominance of the shear stress 
over the effects of the cross-flow pressure gradient and mass transfer at  the 
leading edge. It is from this flow that the boundary layer develops with spanwise 
distance, i.e. with increasing f;, until that corresponding to the infinite swept 
stagnation line prevails. This same leading edge behaviour for incompressible 
flows is given by Moore (1957), Sowerby (1965) and Banks (1967). 

1 f: + f i  f; = 0, fi(0) = fi'(0) = 0)  fl(m) = 1, 

4: + f i &  = 0, &O) = &(O) = 0, &(m) = 1, 
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From the solutions to (2.10) and (2.11), the quantities which may be used to 
compute the skin-friction, the heat transfer and the surface flow divergence, are 
(azflac2) (& 0)  and (a2q5/ac2) ( [ , O ) ,  and therefore the distribution of these quantities 
with 6 for sets of the parameters K ,  g, and Zi will be of interest. Note that in all 
cases (a'2f/ag2) (0,O) = ( a2$/8C2) (0,O) = 0.469600. 

It is of interest to observe that the independent variable E is analogous to 6 of 
Moore (1957) for his m = 0, i.e. for a uniform spanwise flow and that it contains 
the effects of cross-flow gradient in ve, of spanwise length in x, and of spanwise 
flow in u,. Thus, if we find the effect of the leading edge vanishes effectively at  
a given value of 5, various combinations of ve, x and u, and thus of the cylindrical 
radius and sweep angle may be considered to achieve that particular value of 6. 

Because 'independence principles ' play a useful role in three-dimensional 
boundary layer theory, we note (2.10) and (2.11) show that near the starting 
edge, i.e. for l2 < 1 the spanwise boundary layer is independent of the chordwise 
boundary layer, but the converse is not true even for the constant density case, 
g, = 1, & = 0. This may be contrasted with the case of a stagnation line of 
infinite extent (cf. § 1). 

2.2. Asymptotic solution 

Suppose we are sufficiently remote from the starting edge so that we may assume 
that no further changes with x occur. Then (2.1)-(2.4) specialize to 

(2.15) 

(2.16) 

(2.17) 

a (2.18) pv + & (PW)  = 0. 

We now introduce a new independent variable, 

and let u = ueF& 21 = Ve@& 

where ( )' denotes in this section differentiation with respect to [. Then (2.18) 
implies -pw = (pepCeve)4 Q0+ constant. 

We may determine the constant so that 

- @do) = (PW), (Pepeve)-' = 2 ~ .  

P: + = 0, 

Introducing Po([), @,([) into (2.15) and (2.16)) we find 

@" o +  @ 0 @" o + ( p  &- @A2 ) = o ,  

(2.19) 

(2.20) 

(2.21) 
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which are subject to the boundary conditions 
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Fo(0) = Fh(O) = @h(O) = 0, P;(co) = @;(co) = 1, OO(O) = - 2 ~ .  

From a comparison of (2.15) and (2.17) we see that a Crocco relation prevails, so 
that, with the same approximate equation of state as assumed above, (2.12) 
applies with (aflac) replaced by F;. 

Equations (2.20) and (2.21) are those solved by Reshotko & Beckwith (1957) 
for K = 0, i.e. for no mass transfer, and by Beckwith (1958) for K > 0, i.e. for 
injection. Since we are interested in the mass transfer case, we shall be explicit in 
identifying our equations with the latter reference. For this purpose we must let 
Fh --f 8, @,+ f, .iii -+ 1 - t = 1 - A-l and gw +tW and set the /3 of Beckwith equal 
to unity. 

Now from the solutions of (2.20) and (2.21) we may determine the important 
wall values and c, c = gc,  we conclude From the relation between 
that 

(2.22) 

Thus, the behaviour as t+m, of the important wall parameters is established. 
It is interesting to note that an asymptotic solution exists for the present flow 
for injection, suction and no mass transfer. This contrasts with the analysis of 
Libby (1969) for the flow a t  the windward plane of symmetry on a cone with 
uniform mass transfer. In that case, an asymptotic solution exists only for 
suction. 

Equations (2.20) and (2.21) describe the flow far from the starting edge, i.e. 
as t -+ co. Suppose we wish more information on how our asymptotic solution is 
approached. To get it, it is convenient to consider the equations describing the 
non-similar flow, i.e. (2.10) and (2.11), and to change variables, 6, 6 to 5, cand 
f = ( F / t )  - KE, 6 = (@ + 2~) / [ .  The new dependent variables F and @ are found 
to be given by the equations 

(2.23) 

subject to the boundary conditions 

The initial data must be specified at  a finite value of 6, say = ti > 0, in terms of 
distributions of F and 0. 

Equations (2.23) and (2.24) may be considered equivalent to the original (2.10) 
and (2.11) and may be integrated by numerical means for increasing 6. Clearly 
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as t+a, (2.23) and (2.24) reduce to (2.20) and (2.21). To examine further the 
asymptotic behaviour we assume that the solutions for f(E, c), $(t, 5)  have been 
determined to some value o f t  such that the corresponding solutions for F ( t ,  Q ,  
@(g, 5) are close to the relevant asymptotic values Fo(C), Qo(g) dehed  by (2.20) 
and (2.21). In  this situation it isnecessary to examine what information determines 
the approach to the asymptotic solution. It is readily found that only initial data 
at 6 = ti does so, there being no forcing influence from the boundary conditions. 
This may be contrasted with the case of the parabolic slab, treated by van Dyke 
(1964) and of the blunt wedge, treated by Chen et al. (1969), wherein the external 
flow as well as initial data determine the approach to the asymptotic solution. 

Thus for the present problem we would not expect a series in inverse half or 
whole powers of to yield any information, and indeed the assumption of a 
solution in the form of such a series fails. However, we would expect an eigen- 
value problem, which would introduce arbitrary constants to be determined by 
initial data at  E = &. Accordingly, we assume that the corrections to the asymp- 
totic values are given by a succession of pairs of functions Fl(&g), <D1([,g) 
F2(E, g), a,([, c), etc., where the first pair are defined by 

(2.25) 

where the boundary conditions are homogeneous and where initial data on Fl 
and Ql are specified at  [ = &. 

Separation of variables applied to (2.25) and (2.26) leads to a &wise variation 
of the form exp ( - $At2 )  and to a [ variation resulting in a higher-order eigen- 
value problem for which the usual techniques permitting proof of the realness 
of the eigenvalues to be established do not appear to apply. Thus h must in 
general be considered complex although physical arguments could be invoked 
to justify the assumption of h real. Accordingly, a major effort (one beyond the 
scope of the present paper) is required to obtain more information concerning 
the approach to the asymptotic solution. 

2.3. Method of solutions : starting series 

We return now to our original problem. Either (2.10) and (2.11) or (2.23) and 
(2.24) with (2.12), and with the initial and boundary conditions, may be solved 
by numerical methods. TO establish the behaviour near the starting station we 
develop f i s t  a series solution in 5. The absence of information concerning the 
approach to the solution for + co precludes using a few terms in this series to 
determine the boundary-layer behaviour over the entire range of fl. Accordingly, 
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as a second approach we apply straightforward numerical analysis to (2.23) and 
(2.24) with E it2 and as independent variables and with initial data supplied 
by the series solution at  some small positive value of c. 

For the series solution we take 

f ( t 3  5 )  = 5 <nfn(<), $(t> 5) = 5 taJn(C) ,  (2.27) 

where fo = #o is the Blasius solution. Substitution into (2.10) and (2.11) and 
collection of powers of < results in a hierarchy of equations of the form, 

n=O n=O 

L, f, E f: Sfof: -nf;f. + (n + l)flf, = Hn (n 3 I) ,  

(n 3 1 1 7  
) (2.28) 

64,& = &+fo$~-nfA& = Zn 
where again ( )‘ denotes differentiation with respect to 5, and where H,, 2, are 
given functions of previously determined terms in the series. In  particular, H, 
depends onfo,fl, . . ., fnP1, fl, G2, . .., $n-2 and their derivatives, while depends 
on f o ,  fl, . . ., f,, &, 42, . . . , q4n-l. To give some indication of their form we write the 
first several: 

H, = 0 ( n =  l), 

= - 2f1f; + f ; 2 - f O f :  (n = 2), 

= - 2flf’L - 3f;f2--fof; -fb 41 + 3f;ft: (12 = 31, 

q& = -2j;j1 (n = l),  
= - 3fif2 - 2f1$; -fofi +f; 4; - g,( 1 - YE)-’ (1 -fh) 

- (1 - f i ) - l f ; (  1 -jA) (12 = 2), 

= - 4fo”f3 - 3f1 $; - (3f2 +fo) $; -f: A - 2$f; 

+ 2.f; $6; + 2j;& +f; 4; + g,( 1 - %)-If; 

- (1 -fi)-lf;(l- 2f;) (n = 3). 

All the initial and boundary conditions are handled by fo except for 

f(<, 0 )  = - K<. 

Thus, fl(0) = - K ,  f,(O) = 0 for n 2 2, 

and &(o) = &(o) =&(o)  = fA(o0)  = &(m) = o (n 1).  

Equations (2.28) may be solved singly and successively according to the 
sequence fl, $1, f2, $2, . . .. The three parameters, K ,  g,, and f i ,  appear as K ,  

g,(l -%)-I and (1 - &)-I. Because the operators L, and Zn are free of para- 
meters, depending as they do only on f o  and its derivatives, we can construct 
solutions on the basis of superposition of universal functions weighted by these 
parameters and by powers of these parameters. If we let Pl = g,(l - f i ) - l  and 
P2 E (1 - fi)-l, then a convenient triple subscript notation leads to 

(2.29) i fn(5) = C, Ki[fn,o,j(0 + ~ f n , l , j ( 5 ) + p z f n , 2 , j ( 5 ) ] ,  

$n(C) = CI Kit$,, 0, j (C) + 1.3 (5)  + P2 4n, 2, j(5)1* 
i = 0 , l ) .  . . 

j = O , l ,  ... 
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With this form of solution, it is found that 

A , o , 1  =fi,o,I+1, $n,o,j “fn ,o , j  (n 2 2). 

We have computed f ,  and 6, for n = 1 , 2 , 3 , 4  and present in table 1 the 
important valuesf,, i , j ( 0 ) )  &, i , i (0) . f  Values not shown for n d 4 correspond to 
terms in the series identically zero, e.g. f l ,  o, = f 3 ,  o, = q&o, = J3, ,,, = 0. 
Although it is impractical and perhaps unnecessary to give graphically all the 
solutions, we do show in figure 2 the ‘velocity profiles ’, f; ,  i, i, &, i, for the special 
case i = 0. We see, then, the typical profiles obtained from series solutions for 
boundary-layer problems. 

\ j  0 
i n\ 

- 0 1 
- 

2 0.1174 
0.1174 

3 

4 0.004892 
0.004892 

- 
- 

I 

- 1.2243 
- 1.2243 
- 
- 

- 0.1089 
- 0.1089 
- 

2 

- 
- 

0.5510 
0.5510 

- 
- 0.09438 
- 0.09438 

3 

- 
0.2258 
0.2258 

4 

- 
0.07427 
0.07427 

TABLE 1. Crucial wall values for series solution 
. C , i , j ( O ) ,  E,i,AO) 

2.4. Numerical solution for 6 large 

The few terms in the series presented above may be used to provide the initial 
data for a numerical treatment of (2.23) and (2.24)) i.e. of the equations appro- 
priate for large [. Equations (2.23) and (2.24) are put in an implicit, difference- 
differential form, so that solutions at 5 = & are obtained from the solution of a 
set of ordinary differential equations which have as the independent variable. 

t A few of our results can be compared with Sowerby (1965), 0.g. f2 ,0 ,0  = fll, 

+ &’,,,,o = gI1, where the right-hand sides are his notation. The two calculations agree 
to all numbers available to us. In addition, the results forf,,,,l, n = j can be compared with 
Libby & Chen (1965), since our equations are identical to theirs if K.$ = - $. The calcula- 
tions agree to 3 and 4 significant figures. 
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Denote by (n)F(g), (")@(c) the solutions for F and @ respectively at = Cn. The 
ordinary differential equations for ("IF and (W are linearized according to the 
approximation indicated by, e.g. 

(n)F2 N 2@-1)p(n)F - (n-Up2. (2.30) 

4.5 - 

4.0 - 

3.5 - 

3.0 T 

5 2.5 - 

2.0 - 

1.5 - 

1.0 - 

0.5 - 

" 
-2-0 -1.5 -1  -0.5 0 0.5 1.0 

f i . 0 . j  K o , j  

FIGURE 2. Thef;,,, velocity profiles. ---, aeries; 
-, difference-differential. 

Thus the two-point boundary conditions for ("IF, (W may be satisfied by super- 
position of two complementary solutions and a particular solution, each obtained 
numerically. Finally, we note that we use a second-order difference formula for 
the v derivatives as indicated by 

(2.31) 

where A is the spacing in 5. This representation requires the series solution to 
be employed at two values of 6. 



Boundary layer at a swept stagnation line 747 

The calculations were carried out for increasing $ until values of the wall shear 
parameters P Z , ~  and @ g ~ , ~  a t  two successive stations were both unaltered 
within 1 % of A - F Z , ~  and A @ g w ,  respectively. 

We have compared our numerical results for $ large with seven of the solutions 
of Beckwith (1958) involving combinations of K,  g, and fi. Our ‘asymptotic’ 
values of P ~ Z , ~  and @ E , ~  agree in each case to at least two significant figures 
with those of Beckwith, so that we consider our numerical procedures to be valid. 

fc 
FIUIJRE 3. Development of the streamwise velocity profile: K = 0.26, 
gu, = 0.5, 6 = 0.375. ---, - , difference -differential. 

3. Results 
We discuss the results of our analysis in terms of the behaviour of the boundary 

layer near the starting station, i.e. for 0 4 5 4 4 and then for the downstream 
region, 5 > 1.  
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From the entries in table 1 it is instructive to construct expressions for fss, 

fsc,w N 0-4696- 1 ~ 2 2 4 3 ( ~ ~ ) + ( 0 ~ 1 1 7 4 + 0 ~ 5 5 1 0 ~ ~ ) ~ ~ f O ( ~ ) ~ ,  

and q$.5,w near 6 = 0, namely, 

(3.1) 1 qJ5c,w z 0-4696- 1.2243(~[) + ( 0 ~ 1 1 7 4 + 0 * 5 5 1 0 ~ ~  

+ O*6l9lP1+ 0*1488P2)~2+O(~3) .  

In  these expressions, the terms involving KC describe the effect of mass transfer 
alone, while those free of K account for the effect of outflow from the stagnation 
line. From (3.1) we see that mass transfer dominates the initial development of 
the wall shear from that given by the Blasius solution, and that as increases the 
second term, which is always positive and which contains an effect of outflow 
alone, will dominate. 

This behaviour is shown in a different form in figure 3; for K = 0.25, g, = 0.5, 
fi = 0.375,t one of the cases solved by Beckwith (1958) for the infinite stagnation 
line, we show the streamwise velocity profile fs(& 5)  for several values of t as 
given by the five available terms in the series solution for = 0, 8, and by the 
difference-differential solution for 5 II 1,$, 2. The boundary layer is seen to 
develop initially under the influence of injection somewhat faster than xh, but 
as increases there dominates the cross-flow effect leading to thinning of the 
layer in terms of 6 or to the approach to an invariance with x. 

The downstream behaviour of the wall shear parameters, as given by the 
series solution and the difference-differential solution, are shown in figures 4 and 5 
in terms of fss ,  - tF:, and qJEs, - 6@.,",, w e r w s  5, where for self-consistency we 
take for F:, and @:, the values of Fzi, and @g, we obtain from our numerical 
solution when further changes with are negligible. The results shown in these 
figures are typical of the seven cases, which we have computed following Beckwith 
(1958), and which involve various combinations of injection rate, wall enthalpy 
and sweep. In  all cases, the cross-flow shear adjusts more rapidly to its asymptotic 
value than does the streamwise shear. As might be expected, increase in sweep 
(3 increased), increase in wall enthalpy, and decrease in injection rate reduce the 
length in terms of 6 required by the boundary layer to adjust to its asymptotic 
behaviour. However, we find for all cases we have considered, that both shear 
parameters are within a few per cent of their asymptotic values for 6 approxi- 
mately equal to 1.5 to 2. This is an applied result of some interest.$ 

We observe from figures 4 and 5 that the difference-differential results indicate 
a smooth, rapid approach of the wall shear parameters to their asymptotic 
values suggesting that the eigenvalues associated with (2.25) and (2.26) may be 
real or have dominant positive real parts. If they are assumed to be only real, 
a numerical scheme to find them and their associated eigenfunctions can be 
readily established. The fact that the quantities fsc, - (Fi,w and q$c, - t@.,",w 
approach zero as t-+ co implies that there is no zero eigenvalue and that there is 
no ambiguity in the origin of the 

zero. 

our difference-differential calculation satisfied our termination criterion. 

co-ordinate. 

t We consider this to be a typical case since none of the parameters defining a flow are 

$ Some of these conclusions have been obtained by considering the values of 5 at which 
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Rainbird and Professor David Kassoy and the assistance of Mrs Claudia B. 
Lowenstein in connexion with the numerical analysis of the series solution. We 
also acknowledge with thanks that Professor M. van Dyke noted a discrepancy 
in an earlier version between the predictions of the series solution and of the 

5 
FIGURE 4. Approach of streamwise shear parameter to its asymptotic value: 
K = 0.25, gw = 0.5, f i  = 0.375. ---, series; __ , difference-differential. 

0.5 1 I I I '  n 
I \  

I 
I 
/ 
/ 

1 4-Terms 
/ 

I 5-Terms \ 

I I I 
0 0.5 1 1.5 2 

t 
-0.5 1 

FIGURE 5. Approach of cross-flow shear parameter to  its asymptotic value: 
K = 0.25, qW = 0.5, @i = 0.375. 
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difference-differentia1 solution, a discrepancy which caused us to re-examine our 
numerical analysis and to uncover a minor error in the c4 terms. 

This study was carried out as part of a research program performed under 
National Aeronautics and Space Administration Grant NGR-05-009-025. 
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